If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-18x-13=0
a = 3; b = -18; c = -13;
Δ = b2-4ac
Δ = -182-4·3·(-13)
Δ = 480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{480}=\sqrt{16*30}=\sqrt{16}*\sqrt{30}=4\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-4\sqrt{30}}{2*3}=\frac{18-4\sqrt{30}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+4\sqrt{30}}{2*3}=\frac{18+4\sqrt{30}}{6} $
| Y=20x-60 | | (5x2)=4(2x+3) | | 37/42=x/16 | | t=3.5(4+5) | | 3n-n+7=27 | | t=3.5(4)+5 | | -8x-3x/2=11 | | (2-2r)^3=0 | | 3t-13=53 | | b/9=17 | | 3/x+1/x-4=1 | | 3n+n+16=80 | | 2v–5=3v+10 | | 2x+x+5=65 | | (5y+2)/5=2 | | 5a+2a=11–2-a | | 1.5/2=0.5/x | | 30=e+18 | | 5/x=9/8 | | 3(x+3)(x-2)=0 | | y=0,01^2+7 | | 15x+(-6x+5)-2-(-x+3)=-(7x+23)-x+(32x) | | 3(c-11)=2(8+c) | | d×(1.2-0.5)=14 | | 4(12-p)=8+p | | 2m-4=5m-24 | | 4n+8=43-n | | 6x+3=26+x/4 | | x=-x²+12x-27 | | (x)=-x²+12x-27 | | 15=3(y-2) | | 20x=-9 |